Ricerca UniTrento avvicina la produzione di idrogeno green

Effettua la tua ricerca

More results...

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Filter by Categories
#finsubito

Finanziamenti personali e aziendali

Prestiti immediati

 


Produrre idrogeno pulito senza bruciare idrocarburi fossili o altre fonti di energia non rinnovabile. Come? Attraverso la via della fotoelettrochimica, un metodo noto anche come fotosintesi artificiale. Un processo che, proprio come la fotosintesi clorofilliana, sfrutta esclusivamente la luce solare e l’acqua come elettrolita per ottenere idrogeno, senza generare emissioni nocive. È quanto ha studiato un gruppo di ricerca del Dipartimento di Fisica dell’Università di Trento.

Uno degli aspetti più innovativi del progetto è l’impiego di fotocatalizzatori (semiconduttori di elettricità) a base di materiali bidimensionali e, in particolare, di nitruro di carbonio grafitico (g-C3N4). Un materiale leggero e sostenibile utilizzato per rompere il legame chimico della molecola dell’acqua per produrre idrogeno. La ricerca ha dimostrato che, se utilizzati in forma di un singolo strato atomico, offrono prestazioni superiori rispetto alle strutture più spesse e disordinate testate in precedenza. Questa scoperta potrebbe aprire la strada a un uso più efficiente di questi materiali nella produzione di idrogeno verde. I risultati sono stati pubblicati sulla rivista Carbon

Lo studio. L’idrogeno è considerato una delle soluzioni più promettenti per la transizione energetica. Ma la maggior parte della produzione attuale avviene attraverso il metodo dello “steam reforming”, che prevede il riscaldamento di metano (combustibile fossile) ad alte temperature. Non è quindi un processo completamente sostenibile. Il progetto trentino si concentra invece sulla produzione di idrogeno tramite celle fotoelettrochimiche.

Contributi e agevolazioni

per le imprese

 

Un processo pulito che non usa idrocarburi o altre fonti di energia non rinnovabile per rompere il legame chimico della molecola dell’acqua per produrre idrogeno.

«Il composto grafitico a base di nitruro di carbonio grafitico è stato suggerito come possibile fotocatalizzatore. A contatto con l’acqua, questo semiconduttore assorbe luce solare visibile e la trasforma in energia chimica per consentire il movimento degli elettroni all’interno della materia. Prima del nostro lavoro, poco si sapeva su questi meccanismi», spiega Francesca Martini, autrice principale dello studio. E prosegue: «Studiando la formazione e la propagazione delle particelle dette eccitoni (coppie di elettroni e buche) prodotti dalla luce solare nel nitruro di carbonio formato da un solo strato di atomi, ci siamo accorti che hanno una velocità molto bassa e si spostano nel fotocalizzatore grazie a un moto combinato con le vibrazioni degli atomi».

Un risultato che chi ha condotto lo studio definisce sbalorditivo. Gli elettroni sono più di duemila volte più piccoli degli atomi del fotocatalizzatore. Quindi si muovono più velocemente, proprio come si muove uno sciame di insetti (gli elettroni) intorno a una persona (l’atomo). Invece, nel nitruro di carbonio questo non succede. È come se lo sciame di insetti si mettesse d’accordo con la persona per andarsene a spasso a braccetto in maniera combinata, fino a quando non incontrano insieme uno ione idrogeno. «In tal caso – semplifica Matteo Calandra, coordinatore dello studio – l’atomo fa l’inchino e lascia passare l’elettrone che si lega allo ione idrogeno. Proprio come fa il padre (l’atomo) della sposa (l’elettrone) quando l’accompagna all’altare (ione idrogeno)».

Il lavoro del team trentino proseguirà eseguendo simulazioni numeriche su un database di oltre cinquemila materiali a sua disposizione. Un’operazione di screening computazionale per individuare catalizzatori migliori di quelli attuali.

«Ci auguriamo che queste ricerche conducano a una forte innovazione per la produzione di idrogeno da celle fotoelettrolitiche. Grazie a questa metodologia, possiamo ora identificare materiali più performanti in modo sistematico e accelerare il progresso nella produzione di idrogeno verde», conclude Pietro Nicolò Brangi, coautore dello studio.

Questo progetto rappresenta un passo significativo verso la sostenibilità energetica e conferma il ruolo di Trento come centro d’eccellenza nella ricerca sulle energie rinnovabili.

Il lavoro rientra nel progetto di ricerca sull’energia rinnovabile e dedicato alla produzione di idrogeno verde H2@Tn avviato oltre un anno fa con il sostegno della Provincia di Trento. Il programma è frutto della collaborazione tra Università di Trento e Fondazione Bruno Kessler. Ha avuto inoltre il contributo dell’Unione europea grazie ai fondi Next Generation Eu.

Lo studio “Ultraflat excitonic dispersion in single layer g-C3N4” è stato firmato da Francesca Martini, Pietro Nicolò Brangi, Pierluigi Cudazzo e Matteo Calandra, tutti del Dipartimento di Fisica dell’Università di Trento.

Prestito personale

Delibera veloce

 



Source link

***** l’articolo pubblicato è ritenuto affidabile e di qualità*****

Visita il sito e gli articoli pubblicati cliccando sul seguente link

Source link